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advantage of the modulus projection for solving com- 
plex strucVures, but there is a slight compensation in 
the reciprocal relationship: namely that  if overlap 
leads to a small peak height in a modulus projection, 
the contributions of these two overlapping atoms to 
the structure amplitudes of tha t  particular layer are 
correspondingly small. Also, it is somewhat rare for 
complete overlap to occur fortuitously, and when 
initiating a crystal analysis with modulus projections 
the projection axis with the greatest probability of 
clear projection should be chosen. 

Finally, modulus projections have the advantage 
tha t  'heavy atom' derivatives of complex organic 
molecules can be solved ab initio with partial  three- 
dimensional data, thus placing analysis within the 
scope of laboratories not equipped with automatic 
computers for handling the complete three-dimensional 
data  otherwise necessary for these compounds. 
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The angular distribution of small-angle X-ray scattering, corrected for the effects of the collimating 
system, is expressed in terms of the pair distribution flmction. This formulation, which has not 
previously been used for determination of collimation corrections, is convenient when the slit 
height or scattering angle is large. When the slits are of infinite height and negligible width, the 
slit-corrected ftmctions are almost as easy to calculate as the perfect-collimation functions. Evalua- 
tion in terms of known functions is made for hollow spheres of uniform charge density, and the 
results are tabulated. The use of the tables for analysis of scattering data is described. 

1. I n t r o d u c t i o n  

In recent years the scattering of X-rays at angles of 
5 ° or less has been used to gain information about the 
size and shape of particles in the size range 20-2000/~, 
including several viruses and proteins (Ritland, Kaes- 
berg & Beeman, 1950; Leonard, Anderegg, Shulman, 
Kaesberg & Beeman, 1953; Schmidt, Kaesberg & 
Beeman, 1954). Under these conditions the small-angle 
scattering is due to diffraction from small particles 
and is little affected by atomic structure. 

A common practice in the analysis of the scattering 
data is to compare the experimental scattering curves 

with scattering curves calculated under the assump- 
tion of a dilute solution of identical particles of a 
particular shape. This procedure is in practice usually 
preferable to an inversion of the scattering curve, 
because there may be sufficient uncertainty in the 
data  to make the inverted curve unreliable and be- 
cause of the difficulty of relating the inverted curve 
unambiguously to the particle size and shape. 

Theoretical scattering patterns have been calculated 
for a few simple shapes, assuming perfect collimation 
(Fournet & Guinier, 1950; Porod, 1948-9). However, 
with collimating slits of the size usually needed to 
obtain sufficient scattered intensity, the effects of the 
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slit system on the scattering pattern are appreciable. 
The correction of calculated scattering patterns for 
imperfect collimation is reviewed by Kratky, Porod & 
Kahovec (1951) and by Anderegg (1952), who derived 
a general expression for the slit-corrected scattering 
pattern. However, his result is difficult to apply for 
large slit heights and for the relatively large scattering 
angles at which data have now been obtained (Leonard 
et al., 1953; Schmidt et al., 1954). 

In this paper a new method is presented for calculat- 
ing scattering patterns for arbitrary slit dimensions. 
The result is expressed in terms of the pair distribution 
function, which previously was used only with perfect 
collimation. For slits of infinite height and negligible 
width the expression takes a particularly simple form. 
In many experimental situations the collimation is 
nearer to that  of slits of infinite height and negligible 
width than to that  of perfect collimation. Scattering 
patterns calculated for collimation by slits of infinite 
height and negligible width should therefore be useful. 
Tables of these slit-corrected functions, obtained by 
the author's method, are given for hollow spheres of 
uniform charge density. 

2. Evaluation of the scattering function 

According to the Debye scattering formula (Compton 
& Allison, 1935), the angular distribution I(k) of 
scattered X-ray intensity from a rigid array of AT 
point charges which can rotate freely as a unit is 
given by 1 x ~sinkrij  

i (k)  = ~ z 2 , 
i= 1 j= ~ kr~j 

where 
]c = 4~ sin ½~]2 

and where ri.i is the distance between charges i and j, 
is the scattering angle, and 2 is the wavelength. The 
values of I(k) are normalized so that  I(0) = 1. 

For an extended charge distribution ~(r) the 
analogue of the Debye formula is obtained by re- 
placing the double summations by two volume inte- 
grations. If for one volume integration a spherical 
coordinate system u, ~, 0 is used with origin at a point 
r 1 in the other volume integration and with r 1 as z 
axis, then u corresponds to rij in the Debye formula. 
When the order of integration is chosen so that  the 
integration over u is performed last, the scattered 
intensity I(k) can be written 

1(It) = dull(u) sin ku 
0 - V -  ' (11 

where 

H ( u ) =  u f sin OdO i dq~ iv  dVl~(rl)~(rl +u) . 

The V~ integration is over the coordinates r 1. A point 
in the spherical coordinate system is denoted by u, 
and the charge density is normalized so that  

fv~( r ) d V =  1. 

This formulation of I(k) is discussed by Porod (1948-9). 
The probability of finding charged regions a distance 
u apart is given by uH(u). Often uH(u) is referred to 
as the pair distribution function and is called the 
distance function by Porod. 

If the volume integration is assumed to extend 
through all space, as can be done without loss of 
generality if ~(r) is taken to be zero for regions con- 
taining no charge, then, for a spherical charge distribu- 
tion (1/4~)~(r), 

where 

Let 

S H(u) =-2 o drlr~Q(rl) o dO sin O~(T) , 

T = [r~+u~-2rlu cos 0]½ . 

s =  T + r  1, t - -  T - r  1. 

Then H(u) can be expressed as an integral over s 
and t, giving 

= ~ds t)dt,  H(u) ¼ (2) 
~ U  

where 

The slit-corrected scattering function P(k) has been 
shown (Anderegg, 1952; Kratky et al., 1951) to be 
related to the perfect collimation function I(k) by the 
equation 

S S P(k) = A d~Wh(~) W,o(o~)I(g)do~, 
0 - - ~  

where A is a normalization constant usually chosen 
to make P(0) equal to unity, Wh(fi) and W~(~) are 
weighting functions for the slit heights and widths, 
respectively, and 

g -- (4r~/~t) sin ½[(~_~)2 +f12]½. 

The calculation of the weighting functions, which 
depend on the type of collimation used, is described 
by Anderegg (1952). If one defines the function 

Io S G(k, u) = A dflWh(fl) daWw(a) sin gu 
-oo  g 

then P(k) can be put in the form 

P(k) = f~H(u)G(k,  u)du.  (3) 

I t  can be seen that  P(k) is the integral of the product 
of two functions, one depending on the type of collima- 
tion and the other on the particle shape. In calculating 
the effects of the slit system, only G(k, u) must be 
considered, while the shape of the scattering particle 
affects only H(u). Therefore the effect of the collimat- 
ing system on the perfect collimation functions is seen 
to be the replacement of K -1 sin ku in (1) by G(k, u). 

By a Fourier inversion, using (1), H(u) can be 
calculated from I(k). An analogous inversion can in 
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principle be performed with (3). Alternatively the 
inversion of (3) can be broken up into two steps. The 
perfect collimation function I(k) is first found by 
operating on the slit-corrected function and a Fourier 
inversion is then used to find H(u). Methods for ob- 
taining the perfect collimation function from the slit- 
corrected function are described by Anderegg (1952), 
and by Kra tky  et al. (1951). 

:For slits of infinite height and negligible width, 
W~(c~) is the delta function ~(c~), and Wh(fl) is con- 
stant over all angles for which I(k) is appreciable. 
Assuming the wavelength is small enough tha t  the 
angular extent of the scattering pattern is so small 
tha t  sin ½q can be replaced by ½~, gives the result 
obtained by Guinier & :Fournet (1947): 

S P(k) = o dfllI(x) .o dfllI(/~l)' (4) 

where 
x = [k~+fl~]½ and fll = 2~rfl/2. 

Using (1), 

S:  duH(u)Jo(kU)// S °° P(k) = dul l (u) .  (5) 
0 

Thus when the slits are of infinite height and negligible 
width, G(k, u) reduces to Jo(ku), and the evaluation 
of the slit-corrected function is not much more difficult 
than finding the perfect collimation function. 

3. S c a t t e r i n g  funct ions  for  h o l l o w  s p h e r e s  

:For hollow spheres  with inner radius ha and outer 
radius a, and with uniform charge density we have 

~(r) = 0 ,  0 ~ < r < h a ;  
~(r) = 3/{aa(1-ha)}, ha < r < a; 
~(r) =0 ,  a < r .  

When this density function is used to calculate H(u) 
and the result substituted into (5), the scattering func- 
tion Ph(ka) for hollow spheres of uniform charge 
density for slits of infinite height and negligible width 
is found to be 

Ph(ka) = M(h)[Po(ka)+hSPo(kha) 
-2N(h ,  ka)+2N(-h ,  ka)],  (6) 

where 

M(h) 5 a ,~ 5-1 = ( 1 - ~ h  + ~ h  ) , 

N(h, ka) = (12-----h)Spo ( l ~  ka ) 

(1-h/2{1 +h i  a (12hka)  - 5  \ - -~-/  \-~--] P~ ~ , 

(2)  15 [(ug+3)J°(u) 2 '  = +3u  Jo(u)-3uJo(u)] , P0 

= 1)Jo(u)+u Jo(u)+uJo(u)], P9 -~ 

J-o(u) = Ii  Jo(t)dt . 

(7) 

When h is zero, the spheres are solid, and Ph(ka) 
reduces to Po(ka), as given by (7). The scattering func- 
tion for spherical shells of negligible thickness is found 
from the limit of Ph(ka) as h approaches 1, giving 

pl(ka) Jo(2ka) 
2ka 

4. Ser i e s  e x p a n s i o n s  

Expanding (5) in powers of k, we have 

~ ( -  1)nkg"~ ug"n/-/(u) du 
0 P(k) = ~" (8) 

~=o 22~(n!)~ 1o H(u)du 

An analogous expansion is possible for (3). The series 
expansion of (6) is 

Ph(ka) = _,Y cnFn(h) (ka) ~n , (9) 

where M(h) is as in (7), and 

30 ( -1 )  n 
cn = (n !)9(2n+2) (2n+3) (2n+5) ' 

F,(h) = M(h)[1 +h~-"+5-2Qn(h)+2Qn(-h)] , 

Qn(h) = (12----h)2"+a[(12----h)2 ~::51 (1-2h)2 ] . 

For uniform spheres h is zero, and 

co  

Po (ka) = .Y, c~(ka) 2~ . (lO) 

For spherical shells of negligible thickness, h ap- 
proaches 1, and the resulting limit of (9) is 

( -  1)" (ka) ~" 
Pa(ka) =~=o ~7 (n!)2(2n+ 1) " 

A series expansion can be obtained for the angular 
distribution of scattering, P(v, ka), for ellipsoids of 
revolution of uniform charge density and with semi- 
major axis va and equatorial radius a, corrected for 
the effects of slits of infinite height and negligible 
width. If the perfect collimation scattering function 
derived by Guinier (1939) is substituted into (4), a 
change of variables and order of integration gives 

P(v, ka) = (cosh -1 v) -1 1)-½ Po(kay ) , v > l ,  

where Po(ka), given by (7), is the uniform-sphere 
scattering function corrected for slits of infinite height 
and negligible width. Using (10), we have 

i1 P(v, /ca) = (cos -1 v) -1 dy(1-y2)-½Po(kay), v < 1 , 
v 
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OO 

P(v ,  ]ca) ~ = Cnfn(v)(]ca) 2n , 
n = O  

where fo(v) = 1 for all v, and for n > 0, 
n = l  

fn(v) = [(2n+ 1)bn]-l[1 + B ( v )  .,~bjv2i+l] , 
j=O 

bj = 22J(j!)~/(2j+ l ) !  , 

• B(v)  = (v~-l)½(cosh-1 v) -1, v /> 1, 

B ( v )  = (1-v2)½(cos -1 v)-~, v < 1 .  

Tables of (11) are available from the author. 

(11) 

(12) 

5. Numer ica l  calculations 

A desk computer and an IBM 602-A calculating punch 
were used to obtain the results given in the tables. The 

error should be no greater than one unit in the last 
figure shown. 

The slit-corrected scattering function Ph(ka) was 
evaluated for 0 < 2ka < 40, with 2ka varying in 
steps of 0.2, for h values of 0"0, 0.3, 0.6, 0.8, 0.9, and 
1.0. A summary of these results is given in Table 1, 
which lists Ph(ka),  for all the above h values, with 2ka 
running in steps of 1 from 2 to 40. Complete tables, 
with second differences, are available from the author. 

For the calculation of the tables of Ph(ka),  tables of 

Jo(x) are needed. The tables of Lowan & Abramowitz 

(1943) were used for the interval 0 < x < 10. For 

10 < x < 40, Jo(x) had to be calculated. Tables of 

Jo(x) for 10 < x < 40 are being published in another 

journal (Schmidt, 1955). 

Table 1. Values o f  Ph(ka) 

Ph(ka) 
^ 

2ka h----0.O h = 0 . 3  h-----0.6 h = 0 . 8  h = 0 . 9  h=; 1.0 

1 0.94765 0.94638 0.93950 0.93109 0.92577 0.91973 
2 0.80454 0.80007 0.77653 0.74877 0.73173 0.71289 
3 0.60720 0.59921 0.55898 0.51479 0.4893 0.46252 
4 0.40145 0.39143 0.34486 0.30018 0.2775 0.25618 
5 0.22685 0.21749 0.18052 0.15522 0.1470 0.14306 

6 0.10554 0.099597 0.086171 0.09247 0.1030 0.11770 
7 0.039294 0-038506 0.054220 0-08977 0.1130 0.13638 
8 0.014626 0.019105 0.059126 0.10887 0.1327 0.15134 
9 0.012198 0.020532 0.072485 0.11767 0-1324 0.13914 

10 0-015636 0.025551 0.075443 0-10396 0.1080 0.10670 

11 0.016202 0.025433 0.063401 0.075263 0.07525 0.076345 
12 0-012575 0.019550 0.042758 0.047896 0.05303 0.064510 
13 0.0074683 0.011595 0.023431 0.034084 0.04919 0.070340 
14 0.0038323 0.005376 0.012105 0-034976 0.05743 0.080048 
15 0.0027056 0.002435 0.009457 0.042439 0-06468 0-080344 

16 0-0032057 0.002010 0.011626 0.046415 0.06188 0.068804 
17 0-0038012 0.002422 0.013790 0.041912 0.04970 0.053680 
18 0.0035675 0.002489 0.013161 0.031157 0-03612 0.045184 
19 0.0025986 0.002050 0.009849 0.020494 0.02913 0.046681 
20 0.0015764 0.001587 0.005746 0.015180 0.03066 0.0529]9 

21 0.0010664 0.001529 0.002731 0.015973 0.03605 0.055667 
22 0.0011189 0.001845 0.001498 0.019474 0.03861 0.051018 
23 0.0013719 0.002154 0.001538 0.021256 0.03501 0.042069 
24 0-0014346 0.002101 0.001881 0.019098 0.02731 0.035357 
25 0.0011901 0.001650 0.001874 0.014082 0.02063 0.034841 

26 0.00081110 0.001064 0-001460 0.009196 0.01869 0.038810 
27 0.00054911 0.0006608 0.0009546 0.006872 0.02115 0.041990 
28 0-00051488 0.0005699 0.0006470 0.007384 0.02438 0.040464 
29 0.00062125 0-0006827 0.0005864 0.009057 0.02466 0.034897 
30 0-00069560 0.0007845 0.0006349 0.009802 0.02115 0.029475 

31 0-00063557 0.0007361 0-0006555 0.008654 0.01615 0.027918 
32 0.00047552 0-0005570 0.0006288 0.006223 0-01292 0.030285 
33 0.00032971 0.0003684 0.0006214 0.003958 0.01302 0.033260 
34 0.00028259 0.0002730 0.0006783 0.002952 0.01523 0.033346 
35 0.00032503 0.0002799 0.0007624 0.003242 0.01687 0.029931 

36 0.00037892 0.0003209 0-0007928 0-003990 0.01605 0.025574 
37 0.00037372 0.0003284 0-0007337 0.004246 0.01307 0.023493 
38 0.00030297 0.0002914 0.9006356 0-003643 0.009947 0-024681 
39 0.00021811 0.0002530 0.0005924 0.002526 0.008638 0.027209 
40 0.00017560 0.0002573 0.0006545 0.001554 0.009475 0-028144 

53* 
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h (2ka) Ph(ka) 
0.0 8.6506 0.011 680 
0.0 10.624 0-016 541 
0"0 15-037 0.002 7045 
0.0 17.256 0.003 8332 
0.0 21.350 0.001 0339 
0.0 23.704 0.001 4494 
0.0 27.641 0.000 50296 
0-0 30.086 0.000 69615 
0.0 33-928 0-000 28233 
0.0 36.436 0.000 38602 

0"3 8.3237 0.018 262 
0.3 10.483 0.026 329 
0.3 15.736 0.001 972 
0.3 17.612 0.002 536 
0.3 20.616 0.001 494 
0"3 23.388 0.002 187 
0"3 27.808 0"000 5655 
0.3 30.219 0.000 7887 
0"3 34.380 0"000 2661 
0.3 36.652 0.000 3317 
0.3 39.411 0.000 2483 

Table 2. Maxima and minima of Ph(k,a) 
h (2ka) Ph(ka) 

0.6 7.2575 0.053 167 
0.6 9.6964 0.076 189 
0.6 14.882 0.009 421 
0.6 17.306 0.013 941 
0.6 22.400 0.001 416 
0.6 24.490 0.001 938 
0.6 28.819 0.000 5842 
0.6 30.820 0.000 6565 
0-6 32-658 0.000 6174 
0.6 35.841 0.000 7941 
0.6 38.928 0.000 5921 

0.8 6.5241 0.085 89 
0.8 8.9052 0.117 78 
0.8 13.398 0.032 989 
0.8 15.994 0.046 415 
0.8 20.322 0.014 871 
0.8 22-976 0.021 257 
0.8 27.263 0.006 775 
0.8 29-912 0"009 810 
0.8 34.206 0.002 925 
0.8 36.807 0.004 263 

0.9 6.190 0.102 1 

h (2ka) Ph(l.'a) 
0.9 8.493 0.135 9 
0.9 12.71 0-048 56 
0.9 15.26 0.065 08 
0.9 19.28 0.028 80 
0.9 21.94 0.038 63 
0.9 25.86 0.018 64 
0.9 28.58 0.025 04 
0.9 32-45 0.012 57 
0-9 35-20 0.016 93 
0.9 39.05 0.008 635 

1.0 5-8843 0.117 38 
1.0 8.0839 0-151 45 
1.0 12.076 0.064 458 
1.0 14-530 0.081 839 
1.0 18.313 0.044 683 
1.0 20-887 0-055 718 
1.0 24.567 0.034 284 
1.0 27.214 0.042 113 
1.0 30.829 0.027 854 
1.0 33.528 0.033 792 
1.0 37.097 0.023 476 
1.0 39-833 0.028 188 

In  Table 2 are given the  maxima  and minima of 
Table 1, with the  values of Ph(ka) at  the  maxima  and 
minima.  The location of the  maxima  and min ima were 
t aken  from roots of the derivat ive of Evere t t ' s  inter- 
polat ion formula,  using second differences. The inter- 
polat ion formula  was then  used to evaluate  the func- 
t ion at  the  max ima  and minima.  

By  direct numerical  in tegrat ion of (4), Pj,(ka) for 
h = 0 has been calculated previously by  Anderegg 
(1952). His results, which also include locations of 
maxima  and minima,  agree with Tables 1 and 2 
within about  1%. 

6. Applications 
Although the  infinite-sl i t-height approximat ion  is not  
always valid, there are m a n y  cases when the infinite- 
sl i t-height funct ions are more near ly  applicable t ha n  
the perfect-coll imation functions. Therefore Tables 1 
and  2 will often be useful for analysis of da ta  when the 
slit height  is much larger t han  the  slit width. 

I f  a scat tering particle is believed to be spherical, 
f rom evidence such as electron micrographs or X- ray  
scat tering pa t te rns  with secondary max ima  and 

minima,  an  a t t emp t  can be made to ~it the da ta  with 
calculated scat tering pat terns  for spheres. The curve 
for uniform spheres (h = 0) should ordinar i ly  be tr ied 
first, as i t  is the  simplest case. If  a sat isfactory fit  
cannot  be obtained,  the  hollow-sphere functions can 
then  be used. 

In  f i t t ing theoret ical  scat ter ing curves to experimen- 
ta l  data ,  two general features of the  curves must  be 
considered. The locations of the  secondary max ima  
and min ima of the  calculated curve must  coincide 
with those of the  data,  and also the intensit ies of the 

secondary max ima  and min ima mus t  agree. By  the  
use of the  following equat ion the  radius a of the  sphere 
can be determined from the  location of the  experimen- 
ta l  angles 7#m at  which max ima  and min ima occur: 

(ka)~ = 4ga/t -1 sin ½~m. 

The X-ray  wavelength is ~t, and  (ka)m is the  argu- 
ment  of the theoret ical  scat tering funct ion  a t  which 
the max imum or min imum corresponding to  ~m 
occurs. The assumption of part icle shape is considered 
verified if the  radius values obtained from different 
maxima  and minima agree within exper imental  error. 

The values of (ka),n depend on h. I f  one plots log (ka)m 
as ordinate and h as abscissa, wi th  the  curves for all 
max ima  and minima on t h e  same axes, an est imate 
of (ka)m can be made for h values not  listed in Table 2. 
Moreover, if a p lot  of log ~ is made on the  y axis 
of another  piece of the  same type  of graph paper,  
the  logari thmic ordinates enable the  poin t  of best f i t  
of locations of max ima  and min ima  to be determined 
merely by moving one paper  relat ive to  the  other. 
An est imate of both  h and a can be found by  this 
process. However, since the  curves of log (ka)m are 
near ly  parallel  for 0.6 < h < 1.0 for the  first three 
max ima  and minima,  a unique choice of radius and h 

is sometimes not  possible wi thout  da ta  at  larger 
scattering angles or wi thout  consideration of scat tered 
intensities. 

The results from the location of maxima  and min ima  
can be checked by comparison of the exper imental  and 
theoret ical  intensit ies at  the maxima  and minima.  
However, the  agreement  ma y  not  be as good as found 
from the  location of max ima  and minima,  since the  
intensit ies are more sensitive to deviat ions from the  
assumed coll imation conditions t h a n  are the  locations 
of the  max ima  and minima.  
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A new analysis of the scattering data for the protein 
particle associated with turnip yellow mosaic virus 
(Sehmidt et al., 1954) has been made using the methods 
outlined above. At the time the data were published, 
hollow-sphere functions corrected for slits of infinite 
height and negligible width had not been calculated, 
and so the data were interpreted by extrapolation 
from available calculations, giving a sphere radius of 
140/~, and an h of 0.75. Applying the same correction 
for the effects of the finite slit widths as was used by 
Schmidt et al. for turnip yellow mosaic nucleoprotein, 
use of Tables 1 and 2 and the methods described above 
essentially confirms the previous results. 

The author wishes to express his gratitude to the 
University of Missouri for financial support, to Dr 
W. W. Beeman for suggesting problems leading to this 
paper, to Dr Bernard Goodman, Dr N. S. Gingrich 
and other members of the University of Missouri 
Physics Department for many helpful discussions and 
suggestions during the writing of the manuscript, and 
to Mr J. B. Combs for aid with the numerical calcula- 
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The layer lines in X-ray fibre diagrams of tobacco mosaic virus gel have been observed to be split, 
the extent of the splitting varying with the strain of the virus. This effect is interpreted in terms 
of the helical arrangement of the protein sub-units about the long axis of the particle, and has 
stimulated some general remarks on diffraction by structures of this type. 

I n t r o d u c t i o n  

X-ray fibre diagrams of highly orientated preparations 
of tobacco mosaic virus (TMV) were first obtained by 
Bernal & Fankuchen (1941). Watson (1954) observed 
that  the diagrams contained prominent features 
characteristic of helical structures, and suggested that  
the virus particle, of diameter 150 • and length 3000 A 
(Williams & Steere, 1951) was in fact one giant helical 
molecule, identical protein units being set in helical 
array around the long axis. He showed that in the 
axial repeat period of 69 A there were 3n+ 1 such 
protein units distributed over 3 turns of the helix. I t  
is not possible to determine unequivocally, from 
high-angle meridional reflexions, whether n is 10 
(Watson, 1954) or 12 (Franklin, 1955), but a recent 

interpretation (to be published) of certain other fea- 
tures of the X-ray diagram favours the value 10, 
giving 31 protein units in 3 turns of the helix. 

We have now observed that  in fibre diagrams of 
TMV the intensity maxima do not lie exactly on a set 
of equally spaced layer lines. If one chooses the set 
of equally spaced layer lines which gives the best fit 
with the diagram as a whole, then one finds that  the 
layer lines whose order is a multiple of 3 (1 = 3n) have 
maxima lying exactly on them, whereas for the layer 
lines 1 = 3 n + l  and l = 3n+2 the maxima are dis- 
placed to a small distance on either side of the mean 
layer-line position. The extent of the effect varies with 
the strain of the virus. This phenomenon is readily 
explained in terms of the suggested helical arrange- 
ment of the protein units of which the virus particle 


